ANIMAL / RUMINANT UNIT AND MANAGEMENT IN A FARM

CHAPTER THREE
MATERIALS AND METHODS
3.1       EXPERIMENTAL SITE:
            The experiment was conducted at the Ruminant Unit of Teaching and Research Farm, Department of Animal Science, Ebonyi State University, CAS Campus Abakaliki. The experiment lasted for 8 weeks


3.2       EXPERIMENTAL ANIMALS AND SOURCE:
            Twelve weaned West African dwarf goats (WADG) of about 3 months of age and average weight of 6.0 + 0.2kg were sourced from the local markets within Abakaliki and Izzi local government areas of Ebonyi State, Nigeria.

3.3 CARE AND MANAGEMENT OF THE ANIMAL
            The animals (goats) were housed in the ruminant unit (intensive unit of production). They were quarantined to stabilize and acclimatize to experimental diet, using ivermection injection which was administered 0.1 ml per animal. They were also drenched with ASP powder against pest des petit ruminants (PPR). The animals were fed as required by the experiment and proper sanitation was strictly adhered to.

3.4       EXPERIMENTAL DIET
            The animals were fed four diets comprising combinations of Gmelina arborea leaf meal and graded levels of Aspergillus treated rice husk. Diet A (T1) was the control and it contained 100% Gmelina arborea leaf meal and 0% rice husk, Diet B (T2) contained 25% Aspergillus treated rice husk and 75% Gmelina arborea leaf meal, Diet C (T3) contained 50% Gmelina arborea leaf meal and 50% Aspergillus treated rice husk, while Diet D (T4) contained 75% rice husk and 25% Gmelina arborea leaf meal.

3.5       EXPERIMENTAL PROCEDURE
            Three goats each were randomly assigned to each experimental diet.. Gmelina arborea leaf meal was sourced from the forest located behind Ebonyi State University Nursery and Primary school while the rice husk was obtained from the rice mills within the state.
            The goats were fed 200g on fresh weight to supply 90g of dry matter requirement of the animal. They were fed 1.8% of the body weight daily.
            Inoculums (Aspergillus niger) were isolated from soil sample collected from compost plot near where rice husk was deposited in the rice mills and maintained on potato dextrose agar (PDA)
            The rice husk which served as substrate was soaked in water and sun dried to a moisture content of 6-7% and packed in poly thene bags.

3.5.1   INOCULATION AND INCUBATION
             Each bag of the substrate was inoculated with 5ml of the spore suspension.
            The inoculated substrate was later incubated at room temperature for about 7 days, when the fungus had covered the substrates. The fungus treated rice husk was later oven – dried in a laboratory at 70oc in preparation for inclusion to the experimental diets.

3.6             DATA COLLECTION
I.                   feed intake and growth parameters: data were collected on average daily weight gain, average weekly weight gain, total weight gain, total feed intake, average weekly feed intake, average daily feed intake, feed conversion ratio
II.               haematological parameters: data were collected on packed cell volume, red blood cell count white blood cell count, and haemoglobin concentration.
3.7 STATISTICAL ANALYSIS
             Data collected were subjected to statistical analysis using analysis of variance (ANOVA) in a completely randomized design (CRD). Significant treatment  means were separated using the Least significant difference(LSD) (Obi 2001).
3.8                   HAEMATOLOGICAL PROCEDURE
Blood sample was collected from the vein of the animal into a plastic tube containing ethylene diamine tetra-acetic acid (EDTA) for the haematological studies.
            Using standard techniques as reported by Jain (1986), the packed cell volume (PCV), red blood cell count (RBC), haemoglobin concentration (Hb), total white blood cells count (WBC) were determined.
3.7       EXPERIMENTAL DESIGN
            The experimental design used was completely randomized design (CRD) according to steel and Torrie (1980). The linear additive model for the CRD used was
            Xij        =          µ + Ï„i + Εij
Where Xij       =          the jth observation   
µ          =          overall estimate of the population mean.
Ï„i          =          effect of the experimental diet
Εij        =          Randomized error associated with the experiment in    each parameter
i           =          number of treatments
j           =          number of replicate
Means differences were found statistically and separated using ordinary least significant difference test (LSD) (Obi 1990).


RESULT
4.1       GROWTH PERFORMANCE
            The result of the growth performance of goats fed Gmelina arborea supplemented with Aspergillus treated rice husk is presented in the table 2.
Table 2: growth performance of goats fed Gmelina arborea leaf meal supplemented with Aspergillus treated rice husk
Parameters                               T1        T2        T3          T4        SEM
Av. Initial live weight(kg)           6.03    6.10    6.07      5.96       0.03
Av. Final live weight(kg)            7.12b   7.77a    7.17b    6.91c      0.19
Av. Weekly weight gain (kg)     0.133b  0.209a  0.138b  0.119b   0.02
Av. Daily weight gain(kg)          0.019b   0.03a  0.020b  0.018b    0.0028
Feed conversion ratio               8.37a    5.052c   6.557b   6.715b    0.68
Av. Weekly feed intake(kg)      1.o6b   1.09a     0.90c       0.80c      0.07
Av. Daily feed intake(kg)          0.151a  0.55ab  0.129bbc   0.114c  0.015
Total feed intake(kg)                8.42b     8.69a   7.21bc      6.40c    0.054
  a, b, c, : means with similar super scripts are not significantly different (P>0.05).
There was a significant (P<0.05) effect of supplementation on the weight gain of the goats. Goats under diet A (T1) had significantly (P<0.05) high feed conversion ratios (8.37) than those on diet B (T2) (5.052).

4.2       HAEMATOLOGICAL INDICES
            The result of the haematological study of goats fed Gmelina arborea supplemented with Aspergillus treated rice husk is presented in the table 3 blow.
Table 3,
Parameters                               T1        T2        T3          T4        SEM
Packed cell volume  %           19.7b    20.5a    19.4b      18.6b      0.4
White blood cell x1011 /µl        4.4ab     4.5a       4.1b       3.86c      0.15
Haemoglobin count g/dl          5.9b      6.04a     5.7bc     4.9c        0.06
Red blood cell x1012 /µl           5.4a     6.09a     5.4a     4.7b      0.029
a, b, c, means with different superscripts are significantly different (p<0.05) from each other.
            There was significant (p<0.05) effect on goats on their haematological indices.


DISCUSSION
In table 2, goats consuming T2 T3 had significantly (p<0.05) higher weight gain that those consuming diets T1 and T4. The average final body weight was significantly (p<0.05) different among the treatments. Goats on diet A (T2 ) had the highest final live weight (7.77kg) followed by diets C(T3), A(T1)lastly diet D(T4) with averages of 7.17kg, 7.12kg and 6.91kg respectively.
            The average weekly weight gain 0.209kg, 0.138kg, 0.133kg and 0.119kg for goats on treatments 2, 3, and 4 respectively were recorded. From the above it could be noticed that high increment in the level of rice husk brought about decrease in weight gain, with diet B having the highest weight gain (0.209kg), which has 25% rice husk inclusion followed by diet C which has 50% rice husk inclusion. The performance decreased as the level of rice husk increases in the diets. It could be attributed to high fibre contents of the diet.
            Supplementation of rice husk had a positive influence on the live weight gain of the animals in this study. Diet B (25% rice husk) has a marginal increase.
            Goats on diets B and A had significantly (p<0.05) higher feed intake than goats consuming diets C and D respectively, the average weekly feed intake of 1.09kg, 1.06kg, 0.90kg and 0.80kg for diets B, A, C and D respectively. It could be noticed that higher increase in the level of rice husk brought about decline or decrease in feed intake. But the increase at 25% level increased the feed intake. These suggested that rice husk was probably not palatable and not acceptable to goats when high in a diet.
            There were significant (p<0.05) differences in feed conversion ratio of the goats under the different diets. Goats on diet B had the least (5.05) while goats on the control diet A had the highest (8. 37) with those on diet C and D (6.715 and 6.557) respectively. Goats on diet A had the best conversion ratio. This could be attributed to the low palatability of rice husk, and thereby decreased their appetite
            In table 3, the significantly higher value of white blood cell recorded for diet B, A and C could be as a result of the animal possessing a protective system suggestive of a well adapted immune system (Tambuwal et al., 2002). The value of the while blood cell (WBC) obtained in this experiment supported the reports of Daramola et al., (2005) that WAD goats possess a protective system providing a rapid and potent defense against any infective agent and this probably form the physiological basis for the adaptation of the species to West African eco-zone which is characterized with high prevalence of diseases. In all the diets, goats under diet B had the greatest value of WBC and the values decrease as the level of inclusion of rice husk increases.
The values of packed cell volume (PCV) obtained for animals on diets B, A and C (20.05, 19.7, and 19.4) fell between the values reported by Daramola et al., (2005) as normal for West African dwarf goats. However, the PCV of animal on diet D fell below the range. This could be due to the high level of the rice husk. Hence, diet B, A and C can be described as diets that maintain animals on normal PCV value.
The value of red blood cell noted for animals on the whole diets showed that the goats are not anemic. The haemoglobin count followed similar trend. The value of red blood cell and haemoglobin reported could be due probably to the age of the animals used in this experiment. Tambuwal et al., (2002) reported that age has a significant effect on haemoglobin and red blood cell (that is, the oxygen carrying capacity of blood is higher in adult goats) since haemoglobin function as a career of oxygen to target organs by forming oxy-haemoglobin (Harmon, 2006) hence animals on diet B are at advantage

CONCLUSION AND RECOMMENDATION
The result of the present study has shown that inclusion of Aspergillus treated rice husk at 25% and 75% Gmelina arborea in the diet of West African dwarf (W A D) goats had no deleterious effect in their efficient utilization of the feed hence their performance. This, therefore, suggest that feeding of Gmelina arborea supplemented with Aspergillus treated rice husk could be used as an alternative feed for West African dwarf goats.

REFERENCES
Adu, I.F. and Ngere, L.O. (1979). Wld. Rev. Anim. Prod. 15:51–62.
Akinsoyinu, A.O. 1974. Studies on protein and energy utilization by the West African dwarf goats. Ph.D. thesis. University of Ibadan, Nigeria.
Aletor V.A., Omodara O.A. (1994). Studies on some leguminous browse plants with particular reference to their proximate, mineral and some endogenous anti-nutritional constituents. Anim. Feed Science Technol. 46: 343-348.
Amata I. A and Bratte L. (2008). The effect of partial replacement of soya bean meal with Gliricidia sepuim  leaf meal on the performance and organ weights of weaner rabbits in the tropics. Asian J. Vet. Adv., 3(3): 169-173.
Amata I.A, Bratte L, Ofuoku A. (2009). Effect of partial replacement of growers mash with Gliricidia sepium leaf meal on the growth of Chinchilla rabbits and its implication for extension advisory services. Afr. J. Livestock Extension, 7: 60-64.
Amata I.A. (2010). The effect of feeding Gliricidia sepium leaf meal on the hematological, serological and carcass characteristics of weaned rabbits in the tropics. Agric. Biol. J. North Am. 1(5): 1057-1060.
Barber, S.(2008). Milled rice and changes during aging. In D. F. Houston ed. Rice chemistry and Technology. P215-263 St Paul, MN, USA, Am, Assoc. Cereal chem.

Belewu, M.A., N.O. Muhammed and B.O. Ikuomola, 2004. Comparative nutritional evaluation of fungus treated and alkali treated rice husk by rat. Moor J. Agri. Res., 2: 129-134.

Best, P. (2006). Ethanol Impact! Significant transformation of World market for grains. Feed International August 2006. www.feedindustrynetwork.com pp. 8-9.
Broster, W.H. 1972. Protein requirements of cows for lactation, p. 293. In W.Lenkeit and K.Breirem, Handbook of animal nutrition, vol. 2. P.Parey, Hamburg, West Germany.
Carew, B.A.R., Mosi A.K., Mba, A.U. and Egbunike, G.N.(1980). The potential of browse plants in the nutrition of small ruminants in the humid forest and derived savanna zones of Nigeria. In: le. Houeron H.N.(ed). Browse  in Africa. ILCA, Addis Ababa Ethiopia April 8-12 pp 307-311.

D’Mello JPF, Fraser KN (1991). The composition of leaf meal from Leucaena leucocephata. Trop. Sci., 23: 75-78.
Devendra, C. (1967b). Studies in the nutrition of the indigenous goat of Malaysia. II. The requirements for live weight gain. Malays. Agric. J. 46:98.
Eggeling, I. (1983).Lignin and exceptional biopolymer and a rich resources. Trends in Biotechnology 1:123-127.
Ewuola, S. O. (1990). Problem of goats keeping among selected farmers in Ondo State. Journal of Animal Production 10;109-119.
F.A.O. (1982). Production year book. F.A.O., Rome.
Fashina O. E., Ologhogbo A. D., Adeniran, G. A., Ayoade G. O., Adeyemi O.A., Olayode G., and Olubanjo O. O. (2004). Toxicological assessment of Vernonia amygdaliana leaf meal in the nutrition of broiler starter chicks. Nig. J. Anim. Prod. 31:3-11.
Fehr, P.M., and J.Delage. (1973).The effect of energy level of diet on the utilization by goat mammary gland of acetate as a precursor of fatty acids in milk.) C.R. Acad. Sci. 267D:3449.
Haenlein, G.F.W. 1950. Stoffwechsel und Energiehaushalt der Ziege. (Nutrition and energy metabolism of goats.) Thesis, University of Hohenheim-Stuttgart, West Germany.
Haenlein, G.F.W. 1980. Mineral nutrition of goats. J. Dairy Sci. 63:1729.
Harmeyer, J., and H.Martens. 1980. Aspects of urea metabolism in ruminants with reference to the goat. J. Dairy Sci. 63:1707.
Hart, E.B., H.Steenbock, and C.A.Hoppert. 1921. Dietary factors influencing calcium assimilation. I. The comparative influence of green and dried plant tissue, cabbage, orange juice, and cod liver oil on calcium assimilation. J. Biol. Chem. 48:33.
Hart, E.B., H.Steenbock, S.W.Kletzien, and H. Scott. 1927. Dietary factors influencing calcium assimilation. IX. Further observations on the influence of cod liver oil on calcium assimilation in lactating animals. J. Biol. Chem. 71:271.
Hemayathy, J and Prabhakar, J. V. (1987). Lipid composition of rice (oryza sativa L) brain J. Am oil chem. Soc. 64:1016-1019.
Henderson, J.McA., and H.E.Magee. 1926. The effect of ultra-violet light on the calcium and phosphorus metabolism of the lactating animal. Biochem. J. 20:363.
Huebner F.R., Bietz J.A., Webb, B.D and Juliano B.O.,(1990). Rice cultivar identification by high performance liquid cromatophy of endo-sperm proteins, cereal chem.67:129-135.

Huzukun, S. Takeda, Y., Maruta, N. and Jaliano, B.O. (1989). Molecular Structures of rice starch. Carbohydrate. Res. 189:227-235.
Itoh, M., T.Haryu, R.Tano, and K.Iwasaki. 1979. Maintenance requirements of energy and protein for castrated Japanese native goats. Nutr. Abstr. Rev. 49:1427.
Juliano, B. O., ed. (1999b). rice: Chemistry and Technology, 2nd ed. St Paul, MN, USA, Am. Assoc. Cereal Chem. 774pp.

Juliano, B.O. (1985). Factor affecting nutritional properties of rice protein. Trans. Anfi. Sci. Technol. (Philipp.), 7:205-216.

Juliano, B.O. and Goddard, M.S. (1986). Cause of varietal differences in insulin and glucose responses to ingested rice. Qual. Plant foods Hum. Nutr. 36:35-41.

Larbi, A. Jabbar, M. A., Orok. E. J., Idiong, N.B and Cobbina, J. (1993). Aichoma Cordifolia, a promising   indigenous browse species in southern Nigeria. Agroforestry systems: 22:38-44.
Lintzel, W., and O.Radeff. 1931. Iron content and iron retention of newborn and nursing animals. Arch. Tierern. Tierz. 6:313.
   Lowry, J.B. (1995). Deciduous trees: a dry season feed resources in Australian tropical woodland. Tropical Grasslands 92:13-17.
Mack, S. (1982). Small ruminant breed productivity in Africa. (Ed. R.M. Gatemby and J.C.M. Trail), ILCA, Addis Ababa, Ethiopia.
Majogaonkar, S.V., Patil, S.S. and Toro,V.A. (1980). Chemical composition and nutritive values of Gmelina arborea tree leaves.  Indian journal of Animal Science 57:1235-1236.
Majumdar, B.N. 1960b. Studies on goat nutrition. II. Digestible crude protein requirements for maintenance from balance studies. J. Agric. Sci. 54:335.
Mecha, I. and  Adegbola, T.A. (1980). Chemical composition of some southern Nigerian forage eaten by goats. In: le  Houeron H.N. (ed). Browse In: African, the current state of knowledge. ILCA, Addia Ababa Ethiopia.
Miller, W.J. 1981. Biological value of different sources of inorganic trace elements. Feedstuffs, March 30, p. 20.
Morand-Fehr, P., and D.Sauvant. 1980. Composition and yield of goat milk as affected by nutritional manipulation. J. Dairy Sci. 63:1671.
Mosse, J. (1990). Nitrogen to protein conversion factors for ten cereals and six legumes or oilseeds. A reappraisal of its definition and determination. Variation according to species and to seed protein content, J. Agric food chem.,38:18-24.
National Research Council. 1975. Nutrient requirements of sheep. 5th rev. ed. National Academy of Sciences, Washington, D.C.
National Research Council. 1978. Nutrient requirements of dairy cattle. 5th rev. ed. National Academy of Sciences, Washington, D.C.
Obi I. U. (2001). Introduction to factorial experiment for Agriculture, Biological and Social sciences research (2nd ed.). Optimal international Ltd Agbani Enugu, Nigeria vii 92 pp.

Ogawa M.,Kumamaru T., Satoh H., Iwata N., Kasai Z. and Tanaka, K. (1987). Purification seed and its polypeptide composition. Plant cell physio 1., 28:1517-1527.

Okagbare GO, Akpodiete OJ, Esiekpe O, Onagbesan OM (2004). Evaluation of Gmelina arborea leaves supplemented with grasses (Pennisetum purpureum) as feed for West African dwarf goats. Trop. Health Anim. Prod., 36:593-598.
 Okello, K.L. and Obwolo, M.J.(1985). Wid. Anim. Rev. 53: 27–32.
Onwuka C.F.I., Akinsoyinu A.O., and Tewe O.O. (1989). Reed value of some Nigerian browse plants: chemical composition and “in-vitro” digestibility of leaves. East Afri. Agric. For J., 54(3): 157-163.
Opasina, B.A. (1984). Disease constraints on productivity of village goats in south west Nigeria. Humid zone Programme document No. 5. ILCA, Ibadan, Nigeria.
Otchere, E.O., Ahmed, H.U., Adesipe, Y.M., Kallah, M.S., Mzamane, N. and others, (1985). Livestock production among pastoralists in Giwa District, Kaduna State, Nigeria. Unpublished mimeo. Livestock Systems Research Project, NAPRI, Shika, Zaria, Nigeria.
Otsyina, R.M., McKell, C.M.(1985). Browse in the nutrition of livestock. World Animal Rev. 53:33-39.  
Perkins, A.E. (1957). The effect of rations excessively high and extremely low in protein content on dairy cows. Ohio Agric. Exp. Stn. Res. Bull. 799.
Platt, B.S., C.R.C.Heard, and R.J.Stewart (1964). Experimental protein-calorie deficiency, p. 445. In H.N.Munro, Mammalian protein metabolism, vol. 2. Academic Press, New York.
Preston, R.L. (1972). Protein requirements for growing and lactating ruminants. Proc. Univ. Nottingham Nutr. Conf.
Rajpoot, R.L. (1979). Energy and protein in goat nutrition. Ph.D. thesis. Raja Balwant Singh College, Bichpuri (Agra), India.
Sachdeva, K.K., O.P.S.Sengar, S.N.Singh, and I.L.Lindahl. (1973). Studies on goats. I. Effect of plane of nutrition on the reproductive performance of does. J. Agric. Sci., Cambridge 80:375.
Satter, L.D., and R.E.Roffler. (1975). Nitrogen requirements and utilization in dairy cattle. J. Dairy Sci. 58:1219.
Sengar, O.P.S. (1980). Indian research on protein and energy requirements of goats. J. Dairy Sci. 63:1655.
Sera, A.B., Sera, S.D., Orden, E.A., Cruz, L.C. and Fujihara, T. (1995). Multi purpose tree leaves and fruits in the diets of small-scale ruminants during the dry season in the Philippines. In: sustainable small scale Ruminant production in semi arid and sub-humid Tropical Areas. Editors: Becker, K., Lawrence, P. and  Orskov, B. university of Hohenhein-480, Stuttgart, Germany pp.91-97.
Shoo, R.A. (1986). A comparative study of rough utilization and growth performance between sheep and goats supplemented with diff. levels of leucanenan leucocephala. Msc. Thesis Sokoine University of Agriculture. Morogoro.
Singh, S.N., and O.P.S.Sengar. 1970. Investigation on milk and meat potentialities of Indian goats, 1965–70. Final Techn. Report Project A7-AH-18. Raja Balwant Singh College, Bichpuri (Agra), India.
Steel R. G. D., and Torrie J. H (1980). Principles and procedure of statistics (2nd ed.) with special references to the biological special malicious Hill book co. New York.

Taira H. and Fuji K.(1979). Influence of cropping season on lipid content and fatty acid composition of lowland non glutinous brown rice. Nippon sakamotsu Gakkai kiji, 48:371-377.

Takeda Y., Hizukun, S. and Juliano, B.O.(1987). Structures of rice amylopectin with low and high affinities for Iodine, carbohydrate Res., 168:78-88.
Williamson, G. and Payne, W.J.A. (1978). An introduction to animal husbandry in the tropics. The English Language Book Society and Longmans, London.
Wilson, J.R. (1990). The eleventh hypothesis: shade Agroforestry today 2: 14-15.
Wilson, R.T. (1985). Wid. Anim. Rev. 53: 8–14.
Winter, J., and R.Goersch. 1974. Ziegen als Versuchstiere. Ein Beitrag zur Fuetterungsoptimierung. (Goats as experimental animals. A contribution to feeding optimization.) Z. Versuchstierkd. 16:256.
                      
                                              APPENDIX I

INITIAL AVERAGE BODY WEIGHT (kg)   
REP
T1
T2
T3
T4
1
6.00
5.98
6.30
6.00
2
6.20
6.13
5.90
5.90
3
5.90
6.20
6.00
5.98
Total
18.10
18.31
18.20
17.88
Mean
6.03
6.10
6.07
5.96
1.         CFM   = =
            CFM   =          437.9
2.         Treatment sum of squares (SSt)
              - CFM
             -  437.9
            SSt      =          0.0335
3.         Total sum of squares (TSS)
             -  CFM
           
            TSS =  0.1977
4.         Error sum of square
            =          TSS - SSt
            =          0.1977-0.0335
=          0.164

ANOVA TABLE
Source of variance
d/f
SS
MS
F-cal
F-tab 5%
1%
Treatment
3
0.0335
0.011
0.537
4.07
7.59
Error
8
0.1642
0.0205



Total
11
0.1977





    
NS       =          Non-significant (P>0.05)
MEAN SEPARATION
LSD    =          ta x sd =          2(s2)    = 0.27
                                                Sqare root  r

5.96
6.03
6.07
6.10
6.10
0.14NS
0.07NS
0.03NS
0
6.07
0.11NS
0.04NS
0

6.03
0.07NS
0


5.96
0




a
 
a
 
a
 
a
 
6.10                6.07                6.03                5.96

APPENDIX II
AVERAGE FINAL LIVE-WEIGHT (KG)
REP
T1
T2
T3
T4
1
7.15
7.69
7.30
6.96
2
7.21
7.83
7.07
6.86
3
7.00
7.79
7.14
6.92
Total
21.36
23.31
21.51
20.74
Mean
7.12
7.77
7.17
6.91

1.         CFM   =         
           
2.        
       

3.         Treatment sum of square =-
            =         
            =         
            =         
4          Error sum of squares
            TSS – SSt
            1.288 – 1.221
            =          0.067

ANOVA TABLE
Source of variance
d/f
Ss
Ms
F-cal
F-tab 5%
1%
Treatment
3
1.221
0.407
48.452
4.07
7.59
Error
8
0.67
0.0084



Total
11
1.288




Highly significant (p<0.05)

MEAN SEPERATION
LSD    =          ta  x sd
Sd        =          2(s2)
                           r
LSD   =                       2.306  x  2(0.084)
                                                           3
LSD    =          0.172
6.91
7.12
7.17
7.77
7.77
1.86*
0.65*
0.6*
0
7.17
0.26*
0.05NS
0

7.12
0.21*
0


6.91
0




c
 
b
 
b
 
a
 
7.77                7.17                7.12          6.91
                                                     


APPENDIX III
AVERAGE WEIGHT GAIN (KG)
REP
T1
T2
T3
T4
1
1.15
1.71
1.00
0.96
2
0.91
1.70
1.17
0.96
3
1.10
1.59
1.14
0.94
Total
3.16
5.00
3.31
2.86
Mean
1.053
1.67
1.103
0.953

1.         CFM   =         
            CFM   =          17.112
2.         Total sum of squares (TSS)
            =         
            =          18.098 – 17.112
            =          0.986
3.         Treatment sum of square
           
            =         
            =          18.04 – 17.112
            =          0.928
4.         Error sum of squares
            Tss - SSt         =  0.986 -0.928
                                                = 0.058
ANOVA TABLE
Source of variance
d/f
Ss
Ms
F-cal
F-tab 5%
1%
Treatment
3
0.928
0.309
42.621
4.07
7.59
Error
8
0.058
0.00725



Total
11
0.986




Highly significant (p<0.05)
MEANS SEPARATION
LSD    =          td x sd
2.306  x  2(0.00725)            = 0.160
                            3

0.953
1.053
1.103
1.67
1.67
0.717*
0.617*
0.567*
0
1.103
0.15NS
0.05NS
0

1.053
0.1NS
0


0.953
0




1.67                1.103              1.05
                                         


APPENDIX IV
AVERAGE WEAKLY WEIGHT GAIN (KG)
REP
T1
T2
T3
T4
1
0.144
0.214
0.125
0.120
2
0.114
0.213
0.146
0.120
3
0.140
0.199
0.143
0.118
Total
0.398
0.626
0.414
0.358
Mean
0.133
0.209
0.138
0.119

1.         CFM   =         
                        =          0.269
2.         Total sum of squares (TSS)
            TSS     =  
            =          0.1442+0.2142+….+0.1182  _
                =          0.284-0.269 = 0.0152
3.         Treatment sum of square (SSt)
            SST =
                        =         
                        =          0.01428
4.         Error sum of square (SSE)
            SSE     =          TSS – SSt
                        =          0.0152 - 0.0143  =  0.0009
ANOVA TABLE
Source of variance
D/f
Ss
Ms
F-cal
F-tab 5%
1%
Treatment
3
0.0143
0.0048
42.478
4.07
7.59
Error
8
0.0009
0.000113



Total
11
0.015




Highly significant (p<0.05)
MEAN SEPERATION
LSD    =          ta  x sd
Sd        =          2(s2)
                           r
LSD    =          2.306  x  2(0.000113)
                                                     3
LSD    =          0.02
0.119
0.133
0.138
0.209
0.209
0.09*
0.076*
0.071*
0
0.138
0.014NS
0.005NS
0

0.133
0.019NS
0


0.119
0




0.209              0.138              0.133              0.119


APPENDIX V
AVERAGE DAILY WEIGHT GAIN (KG)
REP
T1
T2
T3
T4
1
0.021
0.031
0.018
0.017
2
0.016
0.030
0.021
0.017
3
0.02
0.028
0.020
0.019
Total
0.057
0.089
0.059
0.053
Mean
0.019
0.030
0.020
0.018

1.         CFM   =         
            CFM   =          0.0055
2.      Total sum of squares (TSS)          
TSS =  0.0058 – 0.0055
=          0.00035
3.         Treatment sum of square (SST)
            SST     =         
                        =         
                        =          0.00032
4.         Error sum of squares (SSE)
            SSE     =          TSS     - SST
                        =          0.000.35 – 0.00032
                        =          0.00003
ANOVA TABLE
Source of variance
D/f
Ss
Ms
F-cal
F-tab 5%
1%
Treatment
3
0.00032
0.00011
29.33
4.07
7.59
Error
8
0.00003
0.0000375



Total
11
0.00035





MEAN SEPERATION
LSD    =          ta  x sd
Sd        =          2(s2)
                           r
LSD    =          2.306  x  2(0.00000375)
                                                     3
LSD    =          0.0086
0.018
0.019
0.020
0.030
0.030
0.012*
0.011*
0.01*
0
0.020
0.002NS
0.001NS
0

0.019
0.001
0


0.018
0




0.030              0.020              0.019              0.018


APPENDIX VI
AVERAGE WEEKLY FEED IN TAKE (KG)
REP
T1
T2
T3
T4
1
1.06
1.09
0.91
0.78
2
1.04
1.09
0.90
0.81
3
1.07
1.08
0.90
0.81
Total
3.17
3.26
2.71
2.40
Mean
1.06
1.09
0.90
0.80

1.         CFM   =         
                        =         
2.         Total sum of square (TSS)
            TSS     =         
                        =          11.2614 – 11.0976
                        =          0.1638
3.         Treatment sum of squares (SSt)
            SST     =         
                        =          11.2602 – 11.0976
                        =          0.163
4.         Error sum of squares (SSE)
            SSE                 =          TSS – SSt
            0.1638 - 0.163
                                    =          0.008
ANOVA TABLE
Source of variance
D/f
Ss
Ms
F-cal
F-tab 5%
1%
Treatment
3
0.163
0.0543
543
4.07
7.59
Error
8
0.0008
0.0001



Total
11
0.638





MEAN SEPERATION
LSD    =          ta  x sd
Sd        =          2(s2)
                           r
LSD    =          2.306  x  2(0.0001)
                                                     3
LSD    =          0.0188
0.80
0.90
1.06
1.09
1.09
0.29*
0.19*
0.03*
0
1.06
0.26*
0.16*
0

0.90
0.1*
0


0.80
0




0.09                0.06                0.90                0.80



APPENDIX VII
AVERAGE DAILY FEED INTAKE (KG)
REP
T1
T2
T3
T4
1
0.151
0.156
0.130
0.111
2
0.149
0.156
0.129
0.116
3
0.153
0.154
0.129
0.116
Total
0.453
0.466
0.388
0.343
Mean
0.151
0.155
0.129
0.114

1.         CFM   =         
                        =          0.227
2.         Total sum of square (TSS)
            TSS     =         
                        =          0.230-0.227  =  0.00321
3.         Treatment sum of squares (SST)
            SSt      =         
                        =         
                        0.230 - 0.227 = 0.00319
                        =          0.00002


ANOVA TABLE
Source of variance
D/f
Ss
Ms
F-cal
F-tab 5%
1%
Treatment
3
0.000319
0.0011
440
4.07
7.59
Error
8
0.00002
0.0000025



Total
11
0.00321





MEAN SEPERATION
LSD    =          ta  x sd
Sd        =          2(s2)
                           r
LSD   =           2.306  x  2(0.0000025)
                                                     3
LSD    =          0.00298
0.114
0.129
0.151
0.155
0.155
0.041*
0.026*
0.0004NS
0
0.151
0.037*
0.0022NS
0

0.129
0.015
0


0.114
0




b
 
a
 
a
 
0.155              0.151              0.129              0.114
                           b                        c                       c


APPENDIX VIII
FEED CONVERSION RATIO
REP
T1
T2
T3
T4
1
7.58
4.93
7.246
6.536
2
9.62
4.878
6.135
6.711
3
7.87
5.348
6.289
6.897
Total
25.07
15.156
19.67
26.144
Mean
8.37
5.052
6.557
6.715

1.         CFM   =         
                        =         
2.         Total sum of squares (TSS)
            TSS     =         
                        =          553.658 – 538.867
                        =          19.791
3.         Treatment sum of squares (SST)
            SSt      =         
                        =          550.299 – 533.867
                        =          16.432
4.         Error sum of squares (SSE)
            SSE     =          TSS-SSt
            SSE     =          19.791-16.432
                        =          3.359
ANOVA TABLE
Source of variance
D/f
Ss
Ms
F-cal
F-tab 5%
1%
Treatment
3
16.432
5.477
13.044
4.07
7.59
Error
8
3.359
6.4199



Total
11
19.791





MEAN SEPERATION
LSD    =          ta  x sd
Sd        =          2(s2)
                           r
LSD    =          2.306  x  2(0.4199)
                                                     3
LSD    =          0.65
5.052
6.557
6.715
8.37
8.37
3.318*
1.813*
1.655*
0
6.715
1.663*
0.158NS
0

6.557
0.505
0


5.052
0




c
 
b
 
b
 
a
 
8.37                6.715              6.557              5.052
                          


APPENDIX IX
PACKED CELL VOLUME (PCV)
REP
T1
T2
T3
T4
1
19.7
21.0
20.3
18.6
2
19.5
20.5
18.3
18.0
3
19.9
20.0
19.6
19.3
Total
59.1
61.5
58.2
55.9
Mean
19.7
20.5
19.4
18.6

1.         CFM   =         
                        =         
2.         Total sum of squares (TTS)
            TSS     =         
            4599.19 - 4590.34
                        =          8.85
3.         Treatment sum of squares (SSt)
            SSt      =         
                        =          4595.7  -  4590.34
                        =          5,36
4.         Error sum of squares (SSE)
            SSE     =          4595.7  -  4590.34
                        =          3.49
ANOVA TABLE
Source of variance
D/f
Ss
Ms
F-cal
F-tab 5%
1%
Treatment
3
5.36
1.787
4.06
4.07
7.59
Error
8
3.49
0.44



Total
11
8.85





MEAN SEPERATION
LSD    =          ta  x sd
Sd        =          2(s2)
                           r
LSD    =         2.306  x  2(0.44)
                                                  3
LSD    =          1.25
18.6
19.4
19.7
20.5
20.5
1.9*
1.1NS
0.8NS
0
19.7
1.1NS
0.3NS
0

19.4
0.8NS
0


18.6





b
 
b
 
b
 
a
 
20.5                18.6                19.4                19.7
                                                     


APPENDIX X
WHITE BLOOD CELL (WBC)
REP
T1
T2
T3
T4
1
4.3
4.6
3.9
3.5
2
4.7
4.3
4.3
3.8
3
4.3
4.7
4.1
4.3
Total
13.3
13.6
12.3
11.6
Mean
4.4
4.5
4.1
3.9

1.         CFM               =         
                        =          =  214.21
2.         Total Sum of squares (TSS)
            TSS     =         
                        =          216.5  -  214.21
                        =          2.29
3.         Treatment sum of squares (SST)
            SST     =         
                        =          215.9  -  214.21
                        =          1.69
4.         Error sum of squares (SSE)
            SSE     =          TSS     - SSt
            SSE     =          2.29    - 1.69  =  0.6
ANOVA TABLE
Source of variance
D/f
Ss
Ms
F-cal
F-tab 5%
1%
Treatment
3
1.69
0.56
7.47
4.07
7.59
Error
8
0.6
0.075



Total
11
2.29





MEAN SEPERATION
LSD    =          ta  x sd
Sd        =          2(s2)
                           r
LSD   =           2.306  x  2(0.075)
                                                  3
LSD    =          0.52
3.86
4.1
4.4
4.5
20.5
0.64*
0.4NS
0.1NS
0
19.7
O.54*
0.3NS
0

19.4
0.24NS
0


18.6
0




ab
 
c
 
c
 
a
 
4.5                   4.4                   1.4           3.86
                                                     


APPENDIX Xi
HAEMOGLOBIN CONCENTRATION
REP
T1
T2
T3
T4
1
5.9
6.03
5.7
4.9
2
5.8
6.09
5.8
4.8
3
6.0
6.0
5.7
5.0
Total
17.7
18.12
17.2
14.7
Mean
5.9
6.04
5.7
4.9

1.         CFM              
                        =         
                        =          382.167
2.         Total sum of squares (TSS)
            TSS     =         
                        =          384.569 - 382.167
                        =          2.403
3.         Treatment sum of squares (SSt)
SSt      =
            =          384.518 -382.167
            =          2.351
4.         Error sum of Square (SSE)
            SSE     =          TSS     -           SSE
                        =          2.403  -  2.35
                        =          0.052
ANOVA TABLE
Source of variance
D/f
Ss
Ms
F-cal
F-tab 5%
1%
Treatment
3
106.888
35.63
5567.05
4.07
7.59
Error
8
0.051
0.0064



Total
11
106.939





MEAN SEPERATION
LSD    =          ta  x sd
Sd        =          2(s2)
                           r
                        2.306  x  2(0.0064)
                                                  3
LSD    =          0.151
4.9
5.7
5.9
6.04
6.04
1.14*
0.34*
0.14
0
5.9
1.6*
0.2*
0

5.7
1.8*
0


4.9
0.




b
 
b
 
a
 
6.04                5.9                   5.7           4.9
                                                     c                 c

APPENDIX ix
RED BLOOD CELL (RBC)
REP
T1
T2
T3
T4
1
5.5
6.09
5.2
4.75
2
5.4
6.10
5.4
4.65
3
5.4
6.09
5.6
4.8
Total
16.3
18.28
16.2
14.2
Mean
5.4
6.09
1.4
4.7

1.         CFM               =         
                                    =          351.87
2.         Total sum of squares (TSS)
            TSS                 =         
                                    =          354.74  -  351.87
                                    =          2.87
3.         Treatment sum of sum of squares (SSt)
            SSt      =           
                        =         
                        =          2.77
4.         Error sum of squares (SSE)
            SSE     =          TSS     -           SSE
                        =          2.87  -  2.77
                        =          0.1
ANOVA TABLE
Source of variance
D/f
Ss
Ms
F-cal
F-tab 5%
1%
Treatment
3
2.77
0.923
73.84
4.07
7.59
Error
8
0.1
0.0125



Total
11
2.87







MEAN SEPERATION
LSD    =          ta  x sd
Sd        =          2(s2)
                           r
LSD   =           2.306  x  2(0.0125)
                                                  3
LSD    =          0.21
4.7
5.4
5.4
6.09
6.09
1.39*
0.69*
0.69*
0
5.4
0.7*
0
0

5.4
0.7*
0


4.7
0




b
 
a
 
a
 
   a
 
6.09                5.4                   5.4                   4.7
                                                     
Share on Google Plus

Declaimer - MARTINS LIBRARY

The publications and/or documents on this website are provided for general information purposes only. Your use of any of these sample documents is subjected to your own decision NB: Join our Social Media Network on Google Plus | Facebook | Twitter | Linkedin

READ RECENT UPDATES HERE