REVIEW OF COSMIC RAY BREAKDOWN MECHANISM IN THE ATMOSPHERE | PHYSICS



ABSTRACT    This work is incompleteClick Here To Get the Complete Work
Cosmic rays are high energy subatomic particles originating from outer space. These cosmic rays produce secondary cosmic rays which enter the atmosphere and generate runaway electrons. The generation of runaway electrons is the focus of this work. The effect of force on these electrons and its energy are examined in relativistic and non-relativistic cases.
This work would adopt the idea of A. V Gurevich et al (1992) and Milikh (2010) of runaway breakdown. Using his ideas, we will explain how the breakdown occurs in the atmosphere stimulated by cosmic rays. Most specifically, we   showed with a clear steps of how Gurevich and Milikh derived their equations. The mathematical tools used in reviewing Gurevich idea are, power series and binomial expansion. We clearly showed the steps of how he used the equation:  
 

Milikh’s idea was reviewed by considering the dynamical frictional force undergone by cold electron: . In comparison, the work of Milikh was in line with that of Gurevich, thus, both confirms the idea of runaway electron under the influence of electric field within the atmosphere.

TABLE OF CONTENTS
Cover page  
Approval page         
Certification             
Dedication               
Acknowledgment
Abstract
Table of Content                    

CHAPTER ONE
INTRODUCTION                          
1.0       Introduction                         
1.1     Aims and Objectives of the Study
1.2     The Scope of the Study                    
1.3      Methodology

CHAPTER TWO
LITERATURE REVIEW
2.1       Cosmic Ray Flux     
2.2       Nature of Cosmic Rays
2.2.1   Primary Cosmic Rays
2.2.2   Secondary Cosmic Rays     
2.3      Cosmic Ray Detection       
2.3.1   Ionization Chamber   
2.3.2   Geiger Muller Counting Tubes
2.3.3   Cloud Chamber
2.4       Modulation of Cosmic Rays                                  
2.5      Natural occurrence of Runaway Electron           
2.6     Gurevich’s Runaway Breakdown Theory
2.7     Review of the Runaway Theories   

CHAPTER THREE
METHODOLOGY 
CHAPTER FOUR                                                                             
         RESULTS
 CHAPTER FIVE                                                                                          
DISCUSSION
CHAPTER SIX
  SUMMARY, CONCLUSION AND RECOMMENDATIONS                       
6.1       Summary and Conclusion
6.2      Recommendations       


REFERENCES
Aleksandr, V;  Gurevich, A N Karashtin, Vladimir A Ryabov, Aleksandr P Chubenko, and Aleksandr L Shepetov, (2009). Nonlinear phenomena in        the       ionospheric plasma. e_ects of cosmic rays and runaway         breakdown on           thunderstorm discharges. Physics-Uspekhi,        52(7):735.
Alexander ,Nevil T. J,(2011). “Investigation of runaway electron generation,         transport, and stability in  the DIII – 1)  tokamak” page 4.
Apel, W.D and Arteage J.C,(2011). Thunderstorm observations by air-shower        radio antenna arrays. Advances in space Research (a cospar     publication).             Vol.48, pp 1295-1303.
Caballero-Lopez, R.A and Moraal  H, (2004), Limitations of the force field            equation to describe cosmic ray modulation, J. Geophys. Res.109.
Clay, R.W,Smith A.G.K and Reid J.L,(1997). Publ. Astron. Soc. Aust. 14,pp            195.
Clay R. and Davison B.,(1997). Cosmic Bullets, Allen and Unwind.
Collier A.B; Aughes A.R.W; J. Lichteberger, and P. Steinbach, (2006). Seasonal and diurnal variation of lightning        activity over Southern Africa and correlation with European Whistler observations, Ann Geophys, 24, 529-542.
Devendra Simgh and Singh R.P, (2010). The role of cosmic rays in the Earth’s       atmospheric processes. Centre for sun-climate Research,  Danish            National         space Institute copehagen, Denmark. Vol. 74. Pp 153. 168.
Dreicer H; (1959). Electron and ion run-away in fully ionized gas. Phys. Rev;        115:    238.
Ermakov, V.I., Kokin, G.A., Komotskov, A.V., Sorokin,M.G., (1992). Results of     measurements of the concentrationof negative ions in the polar          stratosphere.             Geomagnetismand Aeronomy 32 (3), 47.

Ferrari, F. and Szuszkiewicz E., (2006). Cosmic ray recipes. Institute of physics    and      CASA, University of Szczecin, UI, Wielkopoiska, 15, 70-451 Szczecin, Poland.
Frohlich, C. and Lean J,(1997). Total solar irradiance variation in new eyes to       seeinside the sun and stars. Deubner et al (ed), Proc. IAU Symposium, p.        185, Kyoto (Kluwer) 89.
Geiger, H., Die K, (1940). Ultrastrahlung als Forschungsproblem, Preuss.    Akad. Wiss., Vorträge und Schriften, vol. 3, (de Gruyter, Berlin,       Germany,).
Gleeson, L. J and Axford W. I (1968), Solar modulation of galactic cosmic rays,    J.         Astrophys. Vol. 154, pp1011.
Grieder , P. F, (2001). Cosmic Rays at Earth: Researcher’s Reference Manual         and      Data    Book, Elsevier.
Gurevich,  A. V., (1992).  Runaway electron mechanism of air breakdown and                   preconditioning during a thunderstorm. Phys. Lett. A, 165:463-468.
Gurevich, A.V; Milikh G.M; and Roussel Dupre R. (1992).Runaway electron         mechanism of air breakdown    and preconditioning during a         thunderstorms,          physics letters A, vol. 165,468.
Gurevich, A. V; Zybin K. P. and Roussel- Dupre,  R. A, (1999). Lighterning            initiation by             simultaneous effect of runaway breakdown and            cosmic ray     showers physics       Lectures A, 254: 79-87.
Harrison, R. D and Stephenson D. B., (2006).  Detection of a galactic cosmic          ray      influence on clouds, Geophysical Research Abstracts, vol.8,             07661.
Hillas, A. M,(1972), Cosmic Rays, Pergamon Press, Oxford.
James, W. Cronin and Thomas. K. Gaisser and simon. P. Swordy (1998).     Scientific       American.
Jim H., (2000).  jimhill@neutrino.kek.jp .
Kakani, S.L and Shubhra K, (2008), Nuclear and particle physics. Vinod     vasishtha       for Viva Books private Limited. Pp. 914-937.
Kruskal M. D. and Bernstein I. (1962),  Princeton plasma physics Laboratory         Report MATT -Q-20, Princeton University.
McCarthy, M. P. and G. K. Parks, (1992). On the modulation of X ray fluxes in      thunderstorms, J. Geophys. Res., 97, 5857.
Molvig, K. and M. S. Tekula, (1977), “Theory of runaway electrons” page.
Multhauf, R. P; J. L. Dubois, C. A. Ziegler (2002). “The Invention and          Development of the Radiosonde”. Smithsonian Studies in History and         Technology. 53. Smithsonian Institute Press.
Murugeshan, R. and Kiruthiga S., (1984). Modern physics, pg 515-525.
National, Weather Service, NWS (2007). Lightning Safety. National             Weathering    Service Report.
Ngobein, M.D (2006), Aspect of the Modulation of Cosmic Rays in the outer         helioshere, Northwest University South Africa. Pp. 182-204.
Nicolai, G. Lehtinen, (2000), Relativistic Runaway Electrons Above            Thunderstorms. PhD thesis; Stanford University.
Okike, O. And Collier A. B. (2011). Testing the cosmic ray – lighning          connection    hypothesis. Institute of Electrical and Electronic Engineers (IEEF).
Pachoff, J. M. (2009). “Intersteller Matter”. Microsoft Encarta 2009.
Rochester, G.D.,(1989). “Cosmic-ray cloud-chamber contributions to the   discovery       of the strange particles in the decade 1947 – 1957”,      in Brown, L.M.,         Dresden, M., and Hoddeson, L., eds., Pions to Quarks:      Particle Physics        in the 1950s, Second International Symposium on        the History of Particle           Physics, held at Fermilab on May 1 – 4, 1985,    (Cambridge University Press,             Cambridge, U.K.; New York, U.S.A).
SADF – Space Astronomy Discusion Forum (2009). Lightning and the runaway     breakdown theory SAD Forum. P. I.
Saxon, D.H., (1998). “The Tools: Detectors”, in Fraser, G., ed., The Particle            Century, (IOP Publishing, Bristol, U.K.; Philadelphia, U.S.A., 1998).
Schwarzschild, B., (2008). The highest-energy cosmic rays appear to come             from    nearby active galactic nuclei. B.M.S//physics Today, Jan.2008,          vol. 61. Issui p 16.
Shibata, M; Katayose Y, Huang J; and Chen B; (2010). “Chemical Composition     and Maximum Energy of Galactic Cosmic Rays”. Institute for Cosmic Ray     Research, University of Tokyo, Kashiwa, Japan.
Strong, A. W (MPE, Garching), Ormes J. E. (NASA/GSFC), Moskalenko I.   (NASA/GSFC), Potgieter M. S.            (Potchefstroom U.). Astrophy. J. 565 :280                  296, 2002. Secondary antiprotons and propagation   of cosmic      rays in the      Galaxy and heliosphere.
Stozhkov, V. I, (2003). “The rate of cosmic rays in the atmospheric processes”      Journal of      physics. Nuclear and particle physics, 29(5) : 913 – 923.
Taylor, M. and Molla M., (2010). Towards a unified source-propagation model     of        cosmic rays, Pub. Astron. Soc. Pac. 424, 98.
Tsuchiya, H. , T. Enoto, S. Yamada, T. Yuasa, M. Kawaharada, T. Kitaguchi, M.     Kokubun, H. Kato, M. Okano, S. Nakamura, and K. Makishima, (2007).           Detection       of high-energy gamma rays from winter thunderclouds.         Phys.   Rev. Lett.,      99(16):165002.
Usoskin,I.G, Gladysheva O.G and Kovaltsov G.A., (2004). Cosmic ray induced     ionization      in the atmosphere: Spatial and temporal changes. J. Atmos.   Sol.     Terr. Phy 66.7791.
Vanessa, C.,(2008). “History of Astroparticle Physics and its Components”             http://www.livingreviews.org/lrr-2
Vasyliunas, V. M., (1980). Upper limit on the electric field along a magnetic o       line. J. Geophys. Res., 85(A9):4616-4620.
Wang, P.W., (1991). “Sturdies of Runaway Electron Transport in TEXT” Plasma   Fusion Center Massachusetts Institute of Technology Cambridge,       Massachusetts          02139 USA. pp 11-12.
Wilson, C.T.R., (1897). “Condensation of Water Vapour in the Presence of             Dust-  free Air          and other Gases”, Philos. Trans. R. Soc. London, 189,          265–307.
Wilson, CT. R., (1924). The electric field of a thundercloud and some of its            effects.           Proc.             Phys. Soc.London.  37: 320. 
Wilson, C.T. R., (1925).  The acceleration of particles in strong electric fields        such    as those          of thunderclouds. Mathematical Proceedings of the           Cambridge     Philosophical Society, 22(04):534-538.
Zong, Q. G., (2009). Energetic electron response to ULF waves induced by             interplanetary shocks in the outer radiation belt. J. Geophys. Res.,            114(A10204).






A DISSERTATION SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL PHYSICS
FACULTY OF PHYSICAL SCIENCES
 
EBONYI STATE UNIVERSITY, ABAKALIKI
IN PARTIAL FUFILMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE (M.Sc) IN PHYSICS (ASTROPHYSICS)

At Martins Library, We provide Informative Materials for Writing Books, Projects, Seminars, Journals, Articles, Proposals, Feasibility Study Etc For Business And Educational Purposes. We also teach you how to print recharge card from the comfort of your home or office.
 
Click on the related links below and read more.
We can keep you updated on this information, please Subscribe for Free by entering your email address in the space provided.

Do you like this article? Share this article
Follows us on Google Plus Facebook & Twitter
CONTACT US TODAY

Share on Google Plus

Declaimer - MARTINS LIBRARY

The publications and/or documents on this website are provided for general information purposes only. Your use of any of these sample documents is subjected to your own decision NB: Join our Social Media Network on Google Plus | Facebook | Twitter | Linkedin

READ RECENT UPDATES HERE