EQUATIONS OF HIGH ENERGY PARTICLES | MATHEMATICS

(A)   EQUATION ONE
∂ρ/∂t  = -  1/r^2    ∂/∂r r^2 uρ                                                     A     
In the steady state,     ∂ρ/∂t  =0, so that
0 = -  1/r^2    ∂/∂r r^2 uρ                                                           Ai         
Where -  1/r^2    is smaller entity,               
0=  ∂/∂r r^2 uρ                                                                                                                  
Integrating we have,
 constant=∫▒∂/∂r r^2 uρ.dr                                                                                                   
                                                             constant=∫▒2 ruρdr                                                                                                    

 constant=r^2 uρ                                                   
Therefore,         
 ρ = constant/(r^2 u)                                                                        Aii
Equation Aii shows that the density  ρ is constant only if r^2 u is constant.

(B)    Equation number two
∂u/∂t  = - u ∂u/∂r  -  1/ρ ((∂P_g)/∂r  + (∂P_c)/∂r)                             B
Multiply both sides by ρ:
ρ ∂u/∂t  = ρ [–u ∂u/∂r  - 1/ρ  ((∂P_g)/∂r+ (∂P_c)/∂r) ]

ρ ∂u/∂t  = - ρu ∂u/∂r  - ((∂P_g)/∂r  + (∂P_c)/∂r)                                 Bi
Equation Bi gives the energy equation; where u is the internal heat energy (that is, energy per unit mass).
ρ ∂u/∂t  = - u^2  ∂ρ/∂r  – ((∂P_g)/∂r  + (∂P_c)/∂r)  
 This is similar to:
ρ ∂u/∂t  =  -P∇.V + ρg  (energy equation)         
By comparison, we have:
- u^2  ∂ρ/∂r  – ((∂P_g)/∂r  + (∂P_c)/∂r)  = -P ∇.V + ρg
                              
- u^2  ∂ρ/∂r  = -P∇.V + ρg+((∂P_g)/∂r  + (∂P_c)/∂r) 
In quadratic expression, ab = c which means that a = c or b = c. Now, considering only:
∂ρ/∂r  = -P∇.V + ρg+((∂P_g)/∂r  + (∂P_c)/∂r)                                                      Bii

Recall that in the steady state,
0=  ∂/∂r r^2 uρ
This implies that                                          
∂ρ/∂r  =0
Equation Bii becomes;
0= -P∇.V + ρg+((∂P_g)/∂r  + (∂P_c)/∂r)
((∂P_g)/∂r  + (∂P_c)/∂r)  -P∇.V +ρg =0
but ρ = nm, where n is the particle density
((∂P_g)/∂r  + (∂P_c)/∂r)  -∇ .(PV)  + nmg =0                                                     Biii
((∂P_g)/∂r  + (∂P_c)/∂r)  is the ratio of force to volume
  That is
force/volume  =  force/area  ×  1/length
OR
mass/volume  ×acceleration
ρ ×acceleration
ρ ×  ∂v/∂t  = ρ ∂v/∂t
nm  ∂v/∂t  =  ∂(nmv)/∂t
Equation Biii becomes;
∂(nmv)/∂t  - ∇.(PV)  +nmg =0
∂(nmv)/∂t  - ∇.(PV)  +nF =0
 nm  ∂v/∂t  =nF - ∇.s +P                                                                  Biv    
Where s is the stress tensor, which is the simple case of an isotropic distribution of the random velocities of the particles.
Equation takes the form:
n_e m_e  (∂v_e)/∂t  = - n_e e(E + v_e/c  × B_0 )  - ∇.s_e  + n_e m_e g +P_ei          Bv   
And 
n_i m_i  (∂v_i)/∂t  = - n_i e(E + v_i/c  × B_0 )  - ∇.s_i  + n_i m_i g +P_ie                  Bvi
Adding equations Bv and Bvi gives:
n_e m_e  (∂v_e)/∂t  +n_i m_i   (∂v_i)/∂t  = - n_e e ((v_i v_e )  × B_0)/c  - ∇P + (n_i m_i  + n_e m_e )g
Where the interaction terms Pei and Pie  are cancelled by Newton’s 3rd law.

(C)  Equation three
(∂P_g)/∂t  =-u (∂P_g)/∂r  -  (γ_g P_g)/r^2    (∂r^2 u)/∂r  - (γ_(g )- 1)(w -u)  (∂P_c)/∂r         C
(∂P_g)/∂t  + (u∂P_g)/∂r  + (γ_(g )- 1)(w -u)  (∂P_c)/∂r  = -  (γ_g P_g)/r^2    (∂r^2 u)/∂r
(∂P_g)/∂t  + (∂uP_g)/∂r  +  (∂(γ_g  -1)(w -u).P_c)/∂r  = -  (γ_g P_g)/r^2    (∂r^2 u)/∂r
(∂P_g)/∂t  + ∂(uP_g  + (γ_g-1)(w -u).P_c )/∂r  = -  (γ_g P_g)/r^2    (∂r^2 u)/∂r
(∂P_g)/∂t  + ∂(uP_g  + (γ_g-1)(w -u).P_c )/∂r  = -  1/r^2    (∂r^2)/∂r u(P_g γ_g )           Ci
In the steady state, from equation Ai, Ci becomes;
(∂P_g)/∂t  + ∂(uP_g  + (γ_g-1)(w -u).P_c )/∂r  =0                                                      Cii
Since   ∂ρ/∂t  =0, therefore, (∂P_g)/∂t  = 0
Equation Cii becomes
P_g  ∂u/∂r  + P_c  ∂(  γ_g-1)(w-u)/∂r  =0
P_g  ∂u/∂r  = – P_c  ∂(  γ_g-1)(w-u)/∂r 
This implies that P_g depends on P_c, that is pressure of the gas depends on the pressure of the cosmic ray. Hence if P_g  =0 then P_c  =0.
P_(g = )the gas pressure.
 P_(c =)the cosmic ray pressure.
(D) Equation four
∂f/∂t  =  1/r^2    ∂/∂r  r^2  D(p,r,t)  ∂f/∂r  –w ∂f/∂r  +  ∂f/∂p   p/(3r^2 )   (∂r^2 w)/∂r  +  φδ(p-p_inj )/(4πp_inj^2 m) ρ(R+0,t)(R ̇-u(R,0,t) )× δ(r-R_((t) ) )           (D)
If we consider only the f(p,t), momentum distribution function of the particles, according to Ramaty (1986):
D(p)=1/3 (u/lv) p^2                                                          Di
then
∂f/∂t=1/p^2   ∂/∂p [p^2 D(p)  ∂f/∂p]
Therefore by the steady state assumption,
∂f/∂t=0
Which gives us;
1/p^2   ∂/∂p [p^2 D(p)  ∂f/∂p]=0
This means that
1/p^(2 ) =0
OR
    ∂/∂p [p^2 D(p)  ∂f/∂p]=0                                              Dii
Using (Di) into (Dii), we have;
    ∂/∂p [p^2.1/3 (u^2/lv) p^2.∂f/∂p]=0
∂/∂p [p^4.u^2/3lv.∂f/∂p]=0
∂((p^4 u^2)/3lv)/∂p.∂f/∂p=0
∂((p^4 u^2)/3lv)/∂p=0
OR
∂f/∂p=0
From quotient rule,
∂((p^4 u^2)/3lv)/∂p=((3l^4.8p^3 u)-(p^4 u^2.12l^3 )     )/(9l^8 )            Diii
3l^4.8p^3-p^4 u^2.12l^3=0
3l^4.〖8p〗^3 u=p^4 u^2.12l^3
l^4.8p^3 u=p^4 u^2.4l^3
l^4.2p^3 u=p^4 u^2.l^3
l.2p^3 u=p^4 u^2
l.2p^3=p^4 u
l.2=pu
2l=pu
u=2l/p                                                                                   Div
Equation (Div) shows that the internal energy of the electron is inversely proportional to the pressure of the gas particles. If we consider the particle density, we have;
p=ρgh=ρgl
Equation (Div) becomes:
u=2l/ρgl
u=2/ρg
But g=10m⁄s^2
Therefore,
u=1/5ρ
u=1/5.ρ
u∝ρ                                                                                        Dv
u=the internal energy
p=the density of the gas particles.
Equation Dv shows that the internal energy is directly proportional to the density of the gas particles
Share on Google Plus

Declaimer - MARTINS LIBRARY

The publications and/or documents on this website are provided for general information purposes only. Your use of any of these sample documents is subjected to your own decision NB: Join our Social Media Network on Google Plus | Facebook | Twitter | Linkedin

READ RECENT UPDATES HERE