RHEOLOGICAL CHARACTERISTICS OF COCONUT TIGERNUT YOGURT | A COMPLETE PROJECT TOPIC



A RESEARCH PROJECT SUBMITTED TO THE DEPARTMENT OF FOOD SCIENCE AND TECHNOLOGY
FACULTY OF AGRICULTURAL AND NATURAL RESOURCE MANAGEMENT (FARM)

IN PARTIAL FULFILLMENT FOR THE AWARD OF
BACHELOR OF SCIENCE B.Sc. IN FOOD SCIENCE AND
TECHNOLOGY


TABLE OF CONTENTS
Title page
Dedication
Acknowledgements
CHAPTER ONE
1.1       Introduction
1.2       Objectives
CHAPTER TWO
2.0       Literature Review
2.2       Types of Yogurt
2.2.1   Pasteurized Stirred Yogurt
2.2.2   Strained Yogurt
2.2.3   Bio-Yogurt
2.2.4   Organic Yogurt
2.2.5   Frozen Yogurt
2.2.6   Concentrated Yogurt
2.3       Nutritional Value and Health Benefits
2.4       Utilization of Yogurt
2.5       Production of Yogurt
2.5.1   The flowchart for yogurt production
2.6       Fermentation
2.6.1   History of tiger-nut
2.6.2   Varieties of tiger nut
2.6.3   Utilization of Tiger Nut
2.6.4   Chemical Composition of Tiger-Nut
2.6.5   Health and Nutritional Properties of Tiger-Nut
2.7       History of Coconut
2.7.1   Nutritional Value of Coconut Milk
2.7.2 Health Benefit of Coconut Milk
2. 8.     Rheology
2.8.1. Significance in Food Industry
2.9       Flow Models for Rheological Properties of Fluids
2.9.1.  Newtonian Fluids
2.9.2.  Non-Newtonian Fluids
2.10 Time-Independent Fluids
2.10.1 Bingham Plastic Fluids
2.10.2. Power-Law Fluids
2.10.2.1.         Shear Thinning Fluids
2.10.2.2   Shear Thickening Fluids
2.10.2.3. Herschel-Bulkley Fluids
2.11    Time-Dependent Fluids
2.11.1 Thixotropic Fluids
2.11.2 Rheopectic Fluids
2.12.   Variables Affecting Viscosity and Flow Behavior
Parameters
2.12.1. Effect of Temperature
2.12.2. Effect of Concentration
2.12.3 Effect of Other Ingredients
2.13. Measurement of Flow
2.14.   Rotational Viscometers
2.14.1. Concentric Cylinder Viscometer

3.0 CHAPTER THREE
3.1    Sources of Samples
3.2       Sample Preparation
3.2.1   Preparation of Milk 
3.2.1. Preparation of Coconut Milk
3.2.1.1  Preparation of Tiger- Nut Milk
3.2.1.7.1  Yogurt Preparation
3.2.1.2  Preparation of Various Blends Yogurt
3.3       Analysis of Sample
3.3.1   Physico- Chemical Analysis
3.3.1.1   pH
3.3.1.2  Total Titratable Acidity (TTA)
3.3.1.3  Total Solids (TS)
3.3.1.4 Total Solubility (OBRIX)
3.2.1.6  Fat Content
3.2.1.6  Determination of Ash
3.3.18 Moisture Content (Determination)
3.3.1.9  Carbohydrate (CHO)
3.4 Viscosity Measurement
3.4.1  Flow Characteristics
3.5 Sensory Analysis
3.6 Statistical Analysis
References



ABSTRACT
The rheological characteristics of yogurt blend with tigernut and
 coconut milk were evaluated. The flow behaviour index (n) was characterized by pseudoplastic behaviour (0.263 – 0.853) with shear thinning effect, and increasing shear stress with shear rate. The consistency coefficient index, (k) increase with increase in coconut blends as well as flow behaviour index (n). The physical properties result showed that the pH  of samples 100%C, 50%T: 50%C, 70%T: 30%C and 100% whole milk yogurt are significantly different at (p>0.05) but sample 100%T, 30%T: 70%C and 40%T: 40%C: 20%M are not significantly different at (p>0.05). The acidity percentage of all the samples are not significantly different from each other at (p>0.05). The total solid of sample of the sample 30%T: 70%C and 50%TC, 30%T: 70% and 70%T: 30%C, and 40%T: 40%C: 20M and 100% whole milk yogurt are not significantly different at (p>0.05). From the brix result, all the samples are significantly different except sample 30%T: 70%C and 50%T: 50%C. The sensory evaluation of yogurt produced from coconut – tigernut milk studied did nut show a deferent trend in variation statistical (p>0.05) between the samples produced in terms of appearance, tastes, flavour and texture.  




CHAPTER FIVE
5.0 CONCLUSION AND RECOMMENDATION
5. 1      Conclusion
      The results obtained from the physical properties indicate the pontenelitity blend of coconut milk and tigernut milk in the production of yogurt.
      The results obtained from the reheological study, shown that the apparent viscosity decreased with increase in shear rate indicating shear thinning behaviour characteristics. The coconut Tigernut yogurt blends studied exhibited pseudoplastic behaviour because their “n” values were generally below I (n<1) it was evident that shear stress also increased with increased in shear rate.
      The sensory evaluation of yogurt produced from coconut – tigernut milk studied did not show a different trend in variation statistical (p>0.0.5) between samples produced in terms of appearance, testes, flavour and texture. However, there was no significant different (p> 0.05) between sample 100% tigernut yogurt, 100% coconut yogurt, 30% tigernut yogurt + 70% coconut yogurt 50% tigernut yogurt + 50% cocnut yogurt and 70% tigerunt + 30% coconut yogurt in their appearance, flavour, taste, texture and general acceptance. The increase in protein demand in developing countries led to effort in finding alternative sources of protein in plant seeds. However, data obtained from this study shows that coconut – tigernut yogurt could be helpful in meeting a significant portion of the daily needs of these nutrients.
5.2       Recommendation                 
      The high cost of imported milk and milk production in Nigeria and Africa seen to have made consumers more ready to accept milk produced from plant source.
      This research work revealed that products from tigernut and coconut should be encourage so as to solve the problem of protein calorie malnutrition in Africa and improve the protein intake of the Nigeria population.



REFERENCES
Adams, M.R., and Moss M.O. (1999). Food microbiology. The Roray Society of Chemistry Thomas Graham House, Sceince park, Cambridge.
Adejuyitan, J.A., Otunota E.T., Akende E.A., Bolarinwa I.F., and Oladokun F.M (2009). Some physiochemical properties of flour obtained form formations of tiger nut (Cypenus esculentus) sources form a market in Ogbomoso, Nigeria. Afr. Journal of Food science. 3:51-55.
Anderson, J. W., Smith B.M., and Custafon N.J. (1994). Health benefit and practical aspects of high fibre diets. Am. J. clin. Nutr. 59:1242-1247.
Anu Chacko, Hari Muraleedhara and Sastry P.S (2010) Effect of storage conditions on the microbial quality of fermented foods. World applied sciences Journal 9(12):1365-1369.
Barnes H. A., Hutton, J. F., Walters, K. (1989).
An Introduction to Rheology. Elsevier Science B.V., Netherlands.
Belewu, M.A. and Abodurin. O.A. (2008). Preparation of kuunu from unexpected rich food sources, tigernut (Cyperus esculentus). Pake.J. Nutr., 7:109-111.
Belewu, M.A., and Belewu K.Y. (2007). Comparative physic – coconut milk sources. Int J. agric biof. 5: 785-787.
Belewu, M.A., Belewu K.Y., and Bamidele R.A. (2010). Cyper-coconut yoghurt: preparation, composition and organoleptie qualities. Partisan Journal of food science and technology 1(1): 010-072.
Beniwal, R.S., Vincent C.A.,Lenot., Sudhir N., Thomas F.I; Rauf A.C and Usman A.A; (2003)”A Randomized trial of yogurt for prevention of Antibiotic- associated Diarrhea”, Digestive Diseases and science 48:10:2077-2082 (October, 2003) doi:10.1023/A:1026/55 328638

Boume, M. C. (1982). Food Texture and Viscosity: Concept and Measurement. Academic Press, Inc., USA.
Brainy dictionary (2005).  Online www- brainy dictionary. com/milk. 190115
David B. Fankhauser, (2003) yogurt making illustrated by professor of Biology and Chemistry U.C. Clermont collage Batavia OH 45/03.
Ekeanyanwu, R.C., Obioma N., and Ononogbu I.C.(2010) The photochemical effects of Nigerian tiger nut (Cyperus eseulentus L)Tuber. Pakisten journal of nutrition (7):709- 715.
Elson, M and Hass, M.D (2005).  Dairy products online  www. health. net /Scr Lartich asp?
Ernest, R.V.(1996) Elementary food science: 4thEdition. International Thomason publishing USA.
 Geankoplis, J. C. (1993). Transport Processes and Unit Operations. Prentice-Hall International, Inc., USA.
Ghanson, M.A.(2008). The use of tiger nut (Cyperus esculentus), cow milk, and their composite as substrates for yogurt production.  HND Dissertation, Cape coast polytechnic, Cape coats, Ghana.
Helferich, W. and  Westhoff D., (1980). Yogurt: All About It.
Herh, P. K. W., Cob, S. M., Roye, N. and Hedman K. (2000), Rheology of Foods: New techniques, capabilities, and Instruments. www.astrheosystems .com (07/12/05)
Ihekoonye, A, and Ngoody P.O. (1985).  Integrated food science and technology for the Tropics Macmillan Publishers Ltd
Kay, D.E. (1987) Roots  Crops: crop and product Digest No2. 2nd ed.  Tropical development and research institute.
Kinsella, J. E. (1976), Functional properties of protein foods; A survey, Critical Review in Food Science and Nutrition 228: 23 0-234.
Kolars, J.C. (1984) yogurt an autodigestiny source of lactose. N. Engl. J med; 310:1-3-
Kosikowski F.V. (1982), Cheese and fermented milk foods, published by Kosikowski F.V. and Associates, New York, pp. 1-711.
Lewis, M. J. (1987). Physical properties of Food and Food processing systems. Chi Chester Ellis Horwood Ltd. Pp108-135
Manohar, R. S., Manohart, B., Rao, P. H. 1998. Rheological Characterization of Wheat Porridge (cooked dalia), a Semi-liquid Breakfast Food. Journal of Cereal Science. 27: 103-108.
Mattinez, V. (2003). Scientific analysis of effects of tiger-nut on Heart diseases and Reluled Aspects.  Tiger-nut and Reluled  Aspects  tiger-nut and Health, pp. 1-2.
Moore, B. (2004). Yogurt. The Austratian Oxford Dictionary 2nd ed. Oxford university press, London. 
Nam Sun Wang, (2008). Yogurt fermentation with lactobacillus cultures. Department of Chemical and Bimolecular engineering university of manyland college park. (MD 20742-2111 ENCH 485.
Nwaoguikpe, R.N. (2010). The photochemical, proximate and amino acid compositions of the  extracts of two varieties of tiger-nut (Cyperus esculentus) and their effects on sickle cell. Hemoglobin polymerization. Journal of medicine and medical sciences. 1(11): 543-549.
Nwokolo, E. (1985). Nutritive quality of seeds of African Breadfruit (Treeculia africanum). Tropical science.
Odoemelan, S.A. (2003). Chemical Composition and functional properties of conophernaut flour (retracarpridium conophorium). International Journal of food science and Technology. 38:729-734.
Okafor, J.N.C., Mord J.I. Ozuma A.U., Solomon M.H., characteriszation of contaminants in tiger-nut (yellow variety). Proceedings of 27th annual. Nigerian Institute of food science and technology (NIFST) conference, Oct. 13-17, Nigeria, pp 210-211.
Oledele, A.K. and Aina J.O. (2007). Chemical composition and functional properties of flour produced from two varieties of tigernut (Cyperus esculentus). African Journal of Biotechnology, 6(21): 2473-2476.
Pelegrine, D. H., Silva, F. C., Gasparetto C. A. 2002. Rheological Behavior of Pineapple and Mango Pulps. Lebensm.-Wiss. u-Technol. 35: 645-648.
Rosenthal, Sylvia Dworsky, (1978). Fresh food. Bookthrift co.p. 157. http.//books. Google.com/booksid =6zwvaaaayaaj.Retrieved 11 AUGUST, 2009.
Snyder H.E. and Kwon T.W., (1987). Soybean Utilization. AVI Connecticut New York. Pp 163 184
Sopade, P.A. and Kassum, A.L. (1992). Rheological characteristics of Nigerian liquid and semi-liquid food. Kunuzaki and knnungyada. Nigerian food Journal 10:23-33.
Steffe, J.F. 1996. Rheological Methods in Food Process Engineering. Freeman Press, USA.
Van Wazer, J.R., Lyons, J.W. 1966. Viscosity and Flow Measurement. John Wiley & Sons, Inc., USA.
Wikipedia, (2005). On line @www.cu.wikipedi.org/pasteurization 1208-11
Worlow R. W., 1992. Rheological Techniques. Ellis Horwood Limited, England.
Alvarez, E; Cancela, A. and Maceiras, R. (2005). Rheological behaviour of powdered  baby foods . internation journal of food properties,8,79-88.

Ariahu, C.C., Risikat, B and Tiamiyu O.I (2001). Influence of soyflour and temperature on tilapia fish homogenate. African Journal Environmental study. 2: 138 – 141

Alakali, J. S., Ijabo, O.J. and satimehin, A.A. (2003). Rheelogical Characteristics of Canarium (canarium schweinfurhil oil. Journal of pure and Applied Science. 6(2): 298-303.

Awonorin, S. O. (1993). Rheological and mechanical properties of Bvitamin retention and sensory characteristics of sawsage made from broiler chicken and guinea fowl. Lebensmittal – wess – U – Techal. 20: 291-300.

Irtwange, S. V., Alakali J. S. and Moses. M. (2009) Rheological characteristics of food gum (Cissus populnea). African Journal of food science vol. 3 (9) 237-242

Ikegwu, O. J. and Ekwu, F. C. (2009) Rheological and functional properties of “achi” flour as influenced by processing time Nigerian food jounal vol. 27(2): 88 – 29

Earle, R. L. (2004). Unit Oreration in food processing. Web Edition, publisher, the New Zealand institute of food science and technology (inc). http://www.nzifst.com.

Lee, F. A. (1985). Basic food chemistry 2nd ed. AVI publishing company inc. p. 363.

Kazanaz, N and fields M. L. (1981). Nutritional improvement of sorghum by ferment toil J. Food science 49:819 – 821 (2009).

Sanful, R. E. (2009) promotion of count in the production of yogurt

RAO, A. M. (1999). Rheology of fluid and Semi solid foods – Aspen I publishers: Gaithersburg, Maryland Pp 204.
King A. J; (2005): High pressure processing of corn and wheat starch http://www.kb.osu.edu/dspace/bistream/Alexanderking.Pdp.07/20/05.

Abu-Jdayil, B. (2003). Modeling the time-dependent reheological behaviour of semisolid food stuffs. Journal of food Engineering, 57,97-102.

Kroger, M. (1976). Quality of yogurt Journal of Dairy science, vol: 59: 344-350

Brennan, J. G., Butters, J. R., Cowell, N. D. and Lilly, A. E. V. (1980). Has operations De la Ingenieria de Las Alimentos, Ed; Acribia: Zaragoza, Spain.

Dail, R.V. and steffe, J. F. (1990a) Dilatancy instarch solution under acid aseptic processing conditions. Journal of food science, 55,1764-1765.

Dail, R.V and Steffe, J. F. (1990b). Rheological characterization of crosslinked waxy maize starch solutions under low acid aseptic processing condition using tube viscometer techniques. Journal of food science, 55,1660-1665.

Harrison, Lo and Cunningham, Fo(1985). Factors influencing the quality of Mayonnaise: a review. Journal of food quality 8,1-20.

 

APPENDIX 1
TASTE
Panelist
50% C&50%T
70%T&
30%C
30%T&
70%C
Control
100%C
100%T
40%T&40%
C& 20%M
TOTAL
1
7
8
7
9
4
7
8
50
2
7
7
3
9
4
4
8
42
3
6
5
5
8
4
5
9
42
4
1
3
1
6
5
4
7
27
5
4
5
7
7
8
6
9
46
6
3
6
6
8
5
6
8
42
7
5
7
7
8
7
8
8
50
8
5
7
3
8
4
5
8
40
9
6
6
4
9
1
5
7
38
10
6
7
3
9
4
5
8
42
11
7
5
2
9
1
5
8
37
12
6
5
4
8
5
6
8
42
13
5
5
4
9
4
5
9
41
14
5
6
5
8
5
4
8
41
15
4
4
4
9
4
5
9
39
16
5
6
5
9
6
6
7
44
17
5
5
4
8
3
2
6
33
18
5
6
6
8
4
5
7
41
19
6
8
6
9
3
7
8
47
20
6
5
6
9
5
4
9
48
Total
104
116
92
167
86
104
159
828
Mean
5.2
5.8
4.6
8.4
4.3
5.2
8.0



CF       =          (828)2 =          685584           =          4897.0
                                  20X7                140

SSS = (104)2 + (116)2 + (92)2 + (167)2 + (86)2 (104)2 + (159)2 – 4897.0                                                                   20                                                                   

=          104118 – 4897.0                  =          308.9 
              20
SSP     =
(50)2x2 + (42)2x5 + (27)2x1 + (46) 2x1 + (40) 2x1 + (38) 2x1              – 4897.0
+ (37) 2x1 + (41) 2x3 + (39) 2x1 + (44) 2x2 + (33) 2x1 + (47) 2x1   
                                                            7
34812 – 4897.0                    =          76.1
   7
SST     =         
(1) 2x4 + (2) 2x2 + (3) 2x7 + (4) 2x20 + (5) 2x30 + (6) 2x22 +  
(7) 2x18 + (8) 2x22 + (9) 2x15                                                                            4897.0
            5442 – 4897.0           =          545
SSE     =         
=          SST     -           (SSS + SSP)
=          545 – (308.9 + 76.1)            =          160

Analysis of variance (ANOVA) table
Source of variation
df
ss
ms
Fcal
Ftab
Samples
6
308.9
51.5


Panelist
19
76.1
4.0


Error
114
160
1.40
36.8
2.17

Since Fcal > Ftab, there is significant difference between the sample.
Sample
50%C&50%T
70%T&30%C
30%T&70%C
Control
100%C
100%T
40%T&40%C& 20%M
Mean
5.2
5.8
4.6
8.4
4.3
5.2
8.0

SX       =                      Ms error                      
                           No of panelist

=                      1.40                =                0.07                      =          0.26 
                   20

LSD    =          SSR     X         SX      
SSR     =          4.24
LSD    =          4.24 X 0.26                =          1.10
Any 2 samples means differing by 1.10 or more are significantly different at 5%
Sample 8.4 – 8.0      =          0.4 n. s. d.
8.4       -           5.8       =          2.6       s.d
8.4       -           5.2       =          3.2       s.d
8.4       -           4.6       =          3.86    s.d
8.4       -           4.3       =          4.1       s.d
8.0       -           5.8       =          12.2    s.d
8.0       -           5.2       =          2.8       s.d
8.0       -           4.6       =          3.6       s.d
8.0       -           4.3       =          3.7       s.d
5.8       -           5.2       =          0.6       n.s.d
5.8       -           4.6       =          1.2       s.d
5.8       -           4.3       =          1.5       s.d
5.2       -           4.6       =          0.6       n.s.d
5.2       -           4.3       =          0.9       n.s.d
4.6       -           4.3       =          0.3       n.s.d
Sample
50%C&50%T
70%T
&30%C
30%T&
70%C
Control
100%C
100%T
40%T&40%C& 20%M
Mean
5.2b
5.8b
4.6bc
8.4a
4.3bc
5.2b
8.0a

APPENDIX 11
FLAVOUR
Analysis of variance (ANOVA) Table
Source of variance  
df
ss
ms
Fcal
Ftab
Samples
6
222.4
37.1


Panelist
19
47.5
2.5


Error
114
210.5
1.46
25.4
2.17

Since Fcal > Ftab, there is significant difference between the samples.
Sample
50%C&50%T
70%T&
30%C
30%T&
70%C
Control
100%C
100%T
40%T&40%
C& 20%M
Mean
5.5
5.3
4.7
7.8
4.9
4.8
7.8

Arrange the mean in order of magnitude
Sample
50%C&50%T
70%T&30%C
30%T&70%C
Control
100%C
100%T
Mean
7.8
5.5
5.3
4.9
4.8
4.7
Arrange the mean 


Share on Google Plus

Declaimer - MARTINS LIBRARY

The publications and/or documents on this website are provided for general information purposes only. Your use of any of these sample documents is subjected to your own decision NB: Join our Social Media Network on Google Plus | Facebook | Twitter | Linkedin

READ RECENT UPDATES HERE